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Abstract

This chapter begins with a brief history of path analysis and structural equa-
tion modeling leading up to John J. McArdle’s development of the Reticular
Action Model (RAM). The path analysis work of Sewall Wright and the
reticule ideas of Raymond Cattell were seminal to how the RAM model was
developed. The history is meant to evoke a sense of how surprising the de-
velopment of RAM was given what was known up to that time. Next is an
overview of how MacDonald and McArdle solved the infinite sum problem
introduced by digraphs with cycles; what was at the time called a non-
recursive model. The chapter then takes a more personal turn as I recollect
some conversations with McArdle in the 1980s when the path diagrammatic
constituents of RAM graphs were developed. The chapter concludes with
discussion of how thinking about Structural Equation Models has evolved
over the past 40 years and how two generations of PhD students learning
the RAM way of thinking has influenced that discussion.

For readers whose first experience of Structural Equation Modeling (SEM) occurred
within the past 40 years, the Reticular Action Model (RAM) approach to SEM may seem
obvious. However, prior to McArdle (1978) first presenting his formulation, this way of
approaching data analysis differed from contemporary approaches in fundamental ways. I
will approach this chapter with a more personal perspective than is the norm. The reason
for this is that I was living in Denver at the time of RAM’s development and had the
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good fortune to be friends with Jack McArdle while he was a postdoc with John Horn.
Jack and I met most Thursdays for lunch at a Mexican restaurant or in his basement office
where he used me as a sounding board for the arguments, algebra, and diagrams that
underlie the RAM model. These discussions were of equal parts matrix algebra and graph
theory; defining characteristics of the RAM way of specifying models. The current chapter
will begin with some historical context, give an exposition of why the RAM model was a
breakthrough, and then trace some of the developments that RAM has enabled.

Setting the Stage

Tukey wrote, “The important question about methods is not ‘How’ but ’Why.’ ... In
explaining why, we must remember that every method is to some extent the child of the
time of its development.” (Tukey, 1954, p. 33). With this in mind, I will begin with a
short history of data analysis from a path analytic perspective to provide historical context
for the shift in thinking that led to the development of the RAM model and the surprising
capabilities that it made available to modelers (see Li et al., 1975; Wolfle, 1999, 2003, for
further historical accounts of path analysis).

Karl Pearson (1896) developed the correlation coefficient which is, at its heart, an
average cross product between two mean centered variables then rescaled to be in units
of the product of the root mean squares of the same variables. Keep in mind that the
cross products and sums of squares (or covariance and variance) are essentially the same
operation on either two variables or one variable respectively.

From this idea of averaging sums of squares as a measure of the relatedness of vari-
ables, Spearman (1904) built his method of factor analysis. The method can be framed
such that an unobserved variable would be the common cause for a number of observed
variables and could be estimated as a system of simultaneous equations with unobserved
common factor(s) on the right hand side of each equation and one equation for each observed
variable.

Sewall Wright (1918) derived path coefficients that decomposed a single observed
correlation into multiple parts and thereby demonstrated a general size factor as well as leg
and skull size factors in rabbits. Two years later, he wrote, “The correlation between two
variables can be shown to equal the sum of the products of the chains of path coefficients
along all of the paths by which they are connected.” (Wright, 1920, p 330) and used this
property to demonstrate heritable traits in piebald guinea pigs. Wright also worked out
what we now call the components of correlation.

It can be shown that the squares of the path coefficients measure the degree of
determination by each cause. If the causes are independent of each other, the
sum of the squared path coefficients is unity. If the causes are correlated, terms
representing joint determination must be recognized. The complete determina-
tion of X [. . .] by factor A and the correlated factors B and C, can be expressed
by the equation: a2 + b2 + c2 + 2bcrBC = 1 (Wright, 1920, p 329)

Wright’s seminal articles not only established the basis of structural equation model-
ing, but also provided the first examples of path diagrams (see Figure 1). Wright used his
path diagrams to explain the implications of his equations, thus demonstrating that these
path diagrams were more than just a convenience, but had a fundamental relationship to
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the equations (see McArdle & Aber, 1990, for an SEM analysis of Wright’s data). In an
article published the next year, Wright (1921) again combined use of the path diagrams and
simultaneous equations to illustrate a variety of structural models. He makes the important
point that one should not interpret these equations as being statements of causality, but
only as being structures of correlations. It is beguiling to think that the left hand side of the
simultaneous equations of SEM are outcomes of the right hand side. But the equals sign is
not the same as a “stores into” operator, equality only expresses a network of balances of
the left and right hand sides. This balancing of accounts is at the heart of SEM, but some
model formulations encourage causal interpretation more than others (Pearl, 2003).

Figure 1. The first published example of a path diagram. Note modern features of SEM including the
exogenous variable labeled “Chance”, common environment (E), unique environment (D) and additive
genetic paths (a) constrained to equality across generations (Wright, 1920).

Wright’s path analysis method did not immediately become popular. Parameters
of systems of simultaneous equations with constraints were difficult to estimate from data
when “Computer” was not a noun applied to a machine, but rather was a job title for people
who calculated arithmetic operations as a profession and used paper and pencil as tools.
Wright took an approach that would now be called an instrumental variables approach,
isolating parts of the model and estimating them independently (see, e.g., Bollen, 1996;
Kirby & Bollen, 2009, for a modern use of this technique). In 1934, Wright proposed
that the method of path coefficients could be converted into Pearson’s partial regression
coefficients, but it was another 20 years before the method began to attract attention.

Tukey gave an idea of how far path analysis had faded into the background when he
wrote “... I had heard of path coefficients repeatedly. The surprise came when I found that
I did not know anything about path analysis, although after some study it seemed to be
natural and useful. After coming to the point where I thought I understood it moderately
well, it occurred to me to wonder why I had not known about it before.” (Tukey, 1954,
p.35). Tukey (1954) and later Turner and Stevens (Turner & Stevens, 1959) proposed that
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unstandardized (what Turner and Stevens called “concrete”) coefficients be used for path
analysis and that reciprocal relations be allowed in path analytic models.

Wright’s responses (1960a, 1960b) to Tukey brought the discussion of path analysis
back into the literature. Wright mentions that overdetermined systems may be estimated
if one can “... obtain a compromise solution by the method of least squares...” (Wright,
1960a, p. 198). At the time, the method used for obtaining solutions to overdetermined
models was not simultaneous equations optimization, but instead isolating instrumental
variables and then solving one equation at a time.

Cattell, steeped in the traditions of factor analysis, argued that the notion of factors
arranging themselves in a pyramid with fewer factors at higher levels was an inevitable
mathematical artifact and not a proof of hierarchical structure of psychological constructs
(see Figure 2).

“One mathematical rule, when communalities are used, is that one cannot take
out as many factors as there are variables. Consequently, a hundred variables
may define, say, only twenty primaries (n.b., first order factors), and twenty
primaries must yield fewer second order factors, and so on. But the fact that a
number of higher order factors as great as the number of variables or lower order
factors cannot be mathematically defined for lack of a sufficiency of variables is
no proof that they do not exist.” —R. B. Cattell (1965)
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Figure 2. Alternative explanation for a pyramidal organization of higher order factors. If only variables
V2 through V7 are measured, a hierarchical structure is inevitable. Figure adapted from Cattell (1965,
p. 234) who captioned his figure, “False hierarchy in an essentially reticular structure.”

In that chapter, Cattell argued for a reticular (i.e., network or directed graph) struc-
ture for latent variables as shown in Figure 3 adapted from his chapter. This model includes
all possible reciprocal regression relations between variables and first order factors. Cattell
states that he did not draw all the possible reciprocal relations from the second order factors
in order “to avoid overcrowding”.

After mainframe computers started to become commonplace in the 1950s and 1960s,
improved techniques for optimization became available and interest was revived. Duncan
(1966) reviewed Wright’s articles in detail and brought path coefficients and path analysis
to wider attention in the social sciences. Duncan recognized the value in path diagrams
being an exact representation of the underlying algebra and complained “Causal diagrams
are appearing with increasing frequency in sociological publications. Most often, these have
some kind of pictorial or mnemonic function without being isomorphic with the algebraic
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Figure 3. Cattell’s reticular structure presages modern network or graph models. Figure is adapted
from Cattell (1965, p. 236) who captioned his figure, “Possible interactions of a set of eight distinct
influences.”

and statistical properties of the postulated system of variables—or, indeed without having
a counterpart in any clearly specified system of variables at all.” (Duncan, 1966, p. 3). At
this point, while the path diagrams of Wright provided a unified way to view a wide variety
of models, fitting models to data involved algorithms specialized to particular models. A
clearer unified view of linear structure of correlation or covariance was still in the future.
The separate languages used in ANOVA, multiple regression, factor analysis, and path
analyses also inhibited unification of the field.

Jöreskog (Jöreskog, 1970) first presented a unified matrix-oriented model for the rela-
tions between variables. Goldberger noted the relationship between Jöreskog’s formulation
and Wright’s path coefficients models and published a review in order to “redress economists’
neglect of the work of Sewall Wright.” (Goldberger, 1972, p. 979). Goldberger organized a
series of meetings between members of the psychometric (including Jöreskog), econometric,
and sociological (including Duncan) communities. At the first of these, Jöreskog (Jöreskog,
1973) presented his Linear Structural Relations (LISREL) model. LISREL allowed the
specification of a wide variety of statistical models within the framework of its matrices.

Each matrix in the LISREL system of specification corresponded to part of an SEM
model. Once the matrices were specified, the same optimization procedure could be used
to obtain parameter estimates from the model no matter which model was input into the
matrices. This was an incredible improvement over the previously idiosyncratic methods for
estimation and accelerated the adoption of SEM in the social and behavioral sciences. One
property of the LISREL system is that it provides definitions of how the matrices should
be used and thus structures the thinking of modelers. This has the benefit of providing
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instructional support for someone first learning how to create statistical models. But it also
has the disadvantage of reducing the probability that someone will innovate new structural
relations that are not easily described within the LISREL framework. It was not uncommon
for researchers in the 1970s and 1980s to speak of “tricking LISREL” into fitting the model
they had in mind.

Starting in the late 1960s (e.g., Cohen, 1968) and accelerating in the late 1970s, people
in the variety of fields of data analysis began to realize that there were many commonalities
between what had been considered to be separate types of statistical models. For instance,
Cohen (1978) derived a proof that interactions and partialed products were the same thing.
Bentler (1976) used the LISREL formulation to illuminate similarities and differences be-
tween principal components analysis and factor analysis as he presented a model for what
he called structural factor analysis. Bentler (1979) expanded on the theme to show how
several kinds of models were all special cases of the LISREL formulation. McDonald pro-
posed a set of principals that could be “... applied to give a unified treatment of a wide
range of models for multivariate data, including models that have not yet been proposed.”
(McDonald, 1979, p. 22). Fraser and McDonald (1988) developed this idea as the COSAN
software, which was later incorporated into SAS.

The Breakthrough: RAM Algebra and RAM Path Analysis

Here our history has come to the time where McArdle introduced the RAM specifi-
cation. Consider the milieu of the late 70’s. While room-sized mainframe computers are
the way that LISREL models are fit, there is a new microcomputer that has just been
released and that seems to be promising: the Apple II. Maybe some day people will be
able to fit SEM models right on their own desks rather than waiting overnight for green-bar
printouts from the data center. An easy, general way of specifying structural models might
revolutionize how we go about converting our theories into testable hypotheses.

In 1978, as a postdoc at the University of Denver, McArdle first presented his ideas
about how one might go about organizing theories drawn with path diagrams into a set of
matrices that could then be optimized with respect to observed data (McArdle, 1978). This
was followed a few months later by a presentation at the American Psychological Associa-
tion’s annual meeting where he called his method the Reticular Analysis Model (McArdle,
1979). The basic idea is that Wright’s path diagrams provided a representation of the struc-
ture of a covariance matrix. The diagrams had four kinds of elements: manifest variables,
latent variables, single headed arrows and double headed arrows. LISREL matrices make a
distinction between manifest variables and latent variables that result in a particular struc-
ture of relations. For instance, in which matrix a regression coefficient is placed depends on
whether it is predicting a manifest variable or a latent variable.

McArdle worked out that if one were to put regression coefficients for both manifest
and latent variables into a single matrix, A, one could radically reduce the total number
of required matrices from LISREL’s 8 or 10 matrices down to just 3. Similar logic applied
to the covariance coefficients: A single matrix, S, for covariances of all the variables could
suffice. The well-known formula for the covariance of linear combinations could then be used
to calculate the total model-implied covariance, Rtotal, of the all the variables (manifest and
latent).

Rtotal = (I + A)S(I + A)′ (1)
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But this formula doesn’t always work. Suppose we have three standardized variables, x1,
x2, and x3. Suppose further that

x3 = b2x2 + e3 (2)

x2 = b1x1 + e2 . (3)

There are five total variables in this system of equations: x1, x2, and x3 are manifest, while
e2, and e3 are model-implied, i.e., latent. If we set the rows and columns to be in the order
{x1, x2, x3, e2, e3} then we can set A to

A =


0 0 0 0 0
b1 0 0 1 0
0 b2 0 0 1
0 0 0 0 0
0 0 0 0 0

 (4)

Note that the position of b1 in A[2, 1] represents that the regression coefficient b1 is pre-
dicting x2 from x1. Similarly, the position of b2 in A[3, 2] represents that the regression
coefficient b2 is predicting x3 from x2. Also note that the latent variables e2 and e3 have an
implied coefficient of 1.0 in Equations 2 and 3, so 1.0 is placed into the appropriate cells of
A.

In the same way, we can set up the variances and covariances that are to be estimated
in the matrix S, where

S =


1.0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 var(e2) 0
0 0 0 0 var(e2)

 (5)

Note that the variances of x1, e2, and e3 are along the diagonal (var(x1) = 1.0 since it
is standardized). The variances of x2, and x3 are set to zero since their variances are
completely accounted for by Equations 2 and 3.

However, now we find that Equation 1 does not follow Wright’s path analysis rule that
“The correlation between two variables can be shown to equal the sum of the products of
the chains of path coefficients along all of the paths by which they are connected.” (Wright,
1920, p 330). This can be easily seen by substituting Equation 3 into Equation 2. In order
to calculate the products of the regression chain (b2b3), we can calculate A2 and so now the
sum of the products of the regression chain becomes

A + A2 (6)

and so
Rtotal = (I + A + A2)S(I + A + A2)′ (7)

Given that I = A0, for each chain of regression coefficients of length n, we need to find

A0 + A1 + A2 + . . . + An , (8)
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a sum of a continued product (McDonald, 1978).
But now suppose that our model has a cyclic relation by adding one more path.

x3 = b2x2 + e3 (9)

x2 = b1x1 + e2 (10)

x1 = b3x3 + e1 . (11)

By the same logic as above, the sum of the products of the regression chain now becomes
an infinite sum of a continued product,

Rtotal = (A0 + A1 + A2 + A3 + . . . + A∞)S(A0 + A1 + A2 + A3 + . . . + A∞)′ (12)

which would seem to be much harder to calculate. However, as McArdle (1980; 1984) noted,

(I−A)(A0 + A1 + A2 + A3 + . . . + A∞) = I + (A−A) + (A2 −A2) + (A3 −A3) . . .

= I

So therefore

(A0 + A1 + A2 + A3 + . . . + A∞) = (I−A)−1

which means that
Rtotal = (I−A)−1S((I−A)−1)′ (13)

applies to sums of products of coefficient chains of any length. This simple formula for the
model implied covariance for all the variables can be filtered to just the measured variables
by constructing an appropriate measured variables × total variables matrix, F, with a
single 1.0 in each row corresponding to that measured variable’s position in the A and
S matrices. This, finally, is the RAM model which calculates Rexp, the model-expected
covariance matrix

Rexp = F(I−A)−1S((I−A)−1)′F′ . (14)

McDonald was the first to propose the notion of a general, two-matrix solution to
the expected covariances of an SEM model (McDonald, 1978, p.61). His model was not
isomorphic to Wright’s tracing rules, but it was influential in McArdle’s proposal later that
year (McArdle, 1978). Equation 14 appears in the discussion at the end of Bentler & Weeks
(1979). However, while they recognize that “It appears more general than [6] (n.b. the
foundational equation in their article), and because it allows essentially all possible mea-
surement levels and multivariate regressions, it also includes Weeks’ (1978) seemingly more
complex model [19]. Such a conclusion ignores some complexities of the problem.” (Bentler
& Weeks, 1979, p. 181). At the time, Bentler and Weeks did not appear to completely
understand the generality of the model, nor the implications for path analysis. However, in
subsequent years, Equation 14 became the foundation of Bentler’s EQS software.

One of McArdle’s main contributions came in how he realized that the calculations
performed in Equation 14 mapped isomorphically to the set of path analysis rules originally
defined by Wright (1920, 1934). Thus, each covariance in the model-expected covariance
matrix, Rexp could be decomposed into additive components of covariance. Each compo-
nent of covariance is the outcome of one traced path or, alternatively, one additive part of
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the matrix equation calculating Rexp. This one-to-one correspondence, i.e., isomorphism,
allows a path diagram to be a specification for one and only one matrix equation and sim-
ilarly the matrix equation specifies one and only one path diagram. For this isomorphism
to exist, McArdle (McArdle, 1980) realized that there was a missing diagrammatic element
in previous path diagrams: there was not a diagrammatic element for variance terms in the
S matrix. In standardized models—where the variance is fixed at 1.0 for all latent and ob-
server predictors—the omitted variance terms had been assumed. But many path diagrams
drawn without variance terms are ambiguous, and this impedes replication of analyses. The
development of the double headed arrow from a variable to itself as representing a non-zero
element in the S matrix allowed for a isomorphic (one to one) relationship between diagrams
and equations and led to development of automatic graphic user interfaces for SEM.

Some Personal History

The first RAM-style path diagrams appeared in print (Horn & McArdle, 1980; McAr-
dle, 1979, 1980) around the time when I first met him. At the time I had just published
Graphtrix, a software package for text and graphics printing on the Apple II (S. M. Boker,
1980). Jack called me up for technical support on how to use it to include path diagrams
into his manuscripts. We were both located in Denver, and so we met for lunch. Thus began
a set of wide ranging discussions on the elements of path diagrams, graph theory, and why
the double headed arrow variance term was so important to tracing rules. In these early
diagrams (1979, 1980), McArdle’s innovative representation of variance terms was already
present, however variances and covariances did not yet include arrows at the ends of the
arcs. A second graphical innovation in RAM diagrams is the use of a triangle to represent
a column of ones in the data so that models for means can be specified in the path diagram
(McArdle, 1986; McArdle & Epstein, 1987).

As McArdle presented his ideas it became evident that he was driven to implement
the most general network of relations, the reticular relations proposed by Cattell (1965).
I argued that “reticular” was an unnecessarily obscure term—why didn’t he just call it
Network Analysis Modeling. In his usual light-hearted manner, McArdle replied that the
acronym NAM had obvious negative associations for many Americans. But primarily, he
wanted to honor Cattell’s contribution in helping generalize latent structure away from the
strict input-output causal implications that had previously dominated statistical modeling.

There is a subtle point here. Input-output designs such as factor analysis, multi-
ple regression, and mediation models all encourage the modeler to think in causal terms.
On the other hand, a network model with feedback (reciprocal relations) is better framed
in terms of bidirectional coupling or resonance. Strict causality becomes irrelevant in a
highly connected feedback network—The answer to the causality question is always “yes”
no matter which two variables and no matter in which order one picks. Modern network
and dynamical systems models are recently beginning to be analyzed in terms of impulse
response resonance, sidestepping the causality question entirely. In this way, McArdle was
30 years ahead of his time.

The A and S matrices have unique placement for each possible regression coeffi-
cient and each variance/covariance relation. McArdle said that one could think of the
matrices as starting with a zero in every cell and add each regression coefficient or vari-
ance/covariance from a theory into the matrices. However, he said, one could also consider
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the matrices as starting as entirely filled and then zero out the regression coefficients and
variance/covariances that should not appear in the diagram. The point here is a result from
cognitive psychology: we tend to see what is present rather than what is not present. Struc-
tural equation modeling involves the balance between what is and what is not present in a
path diagram. By focusing on what is not in the diagram, one focuses on the constraints
that provide an opportunity for misfit. McArdle said this was akin to Sir Arthur Conan
Doyle’s Sherlock Holmes short story, Silver Blaze:

Gregory (Scotland Yard detective): “Is there any other point to which you would
wish to draw my attention?”
Holmes: “To the curious incident of the dog in the night-time.”
Gregory: “The dog did nothing in the night-time.”
Holmes: “That was the curious incident.” —Doyle, A.C. (1894, p. 22)

McArdle’s point is well taken. The single and double headed arrows that are missing from
a path diagram are exactly what makes a theory testable using goodness of fit statistics.
The fact that many published path diagrams are artifactually missing critical elements
that in fact existed in the calculation of a model’s expectation has been a source of great
consternation to McArdle, and he has crusaded to persuade SEM users to publish complete
diagrams (e.g., Figure 4). The RAM-style path diagram is now a well established and often
recommended standard (e.g., McDonald & Ho, 2002)
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Figure 4. An intercept and slope latent growth curve model. Note the use of fixed basis functions to
calculate the slope and intercept.

Out of these discussions, in 1982 I developed the RAMpath algorithm that allowed
automatic computer-generated path diagrams from matrices (S. M. Boker, McArdle, &
Neale, 2002). This algorithm was first implemented in order to automatically determine
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the longest regression chain so that the expected covariance matrix for a RAM-style model
could be calculated without taking an inverse; thus enabling model-expected covariance
matrices to be estimated on an early 48 kilobyte Apple II. Later, McArdle and I developed
software that would automatically highlight each component of covariance one at a time on
a path diagram (McArdle & Boker, 1990). This algorithm has since been used in software
including Mx (M. C. Neale, Boker, Xie, & Maes, 1999), RAMONA (Browne & Mels, 1998),
COSAN (Fraser & McDonald, 1988), OpenMx (S. Boker et al., 2009; M. Neale et al., 2016),
Ωnyx (Oertzen, Brandmaier, & Tsang, 2015), and the R packages SEM (Fox, 2009) and
RAMpath (Zhang, McArdle, Hamagami, & Grimm, 2012).

One early argument against the RAM formulation for use in model estimation is that
its matrices are large and sparse. McArdle’s argument was the Moore’s law—the exponential
increase in transistor density on CPUs—would make this efficiency penalty irrelevant. In
his view, the bottleneck was not CPU time, but rather the time of the creative scientist.
By making model specification as easy as possible, more creative data science would be
accomplished. If one scientist spent more time attempting to shoehorn his theory into a
cumbersome modeling framework whereas another scientist was able to translate her theory
into a model more quickly and with fewer errors, then she would likely be the first to publish.

In the mean time, another advantage has become apparent. Due to the close link
between graph theory and the model specification, techniques such as power equivalent
models (Oertzen, 2010), RAMpart (Pritikin, Hunter, Oertzen, Brick, & Boker, 2017) and
the RAMpath algorithm have allowed many common RAM-style models to automatically
be more computationally efficient than the equivalent LISREL or MPlus specifications.

How Our Thinking About Modeling Has Changed

One important aspect of RAM is that it refocuses attention from the specifics of a
particular modeling framework and brings to the foreground the psychological theory that
is to be tested without few constraints on how that theory is instantiated in a model. This
can be frustrating for those new to SEM, since there is a great deal of cognitive support
provided by statistical techniques such as ANOVA and its regression alter-ego, the general
linear model (GLM). New psychologists are trained to think in terms of predictors and
outcomes. This is a useful technique for generalizing average effects to a population when
combined with data from controlled experiments. However, the logic of ANOVA and GLM
break down when conclusions are drawn from observational or quasiexperimental data. This
can be illustrated in SEM by using the fact that ANOVA and GLM (and many other earlier
techniques such as Factor Analysis, Principal Components, and Canonical Correlation) are
special cases of RAM.

The “Reticular” in RAM emphasizes the fact that SEM needs to be understood as a
being a network model. When Cattell (1965) proposed the idea of any observational model
being embedded in a larger network of unobserved relations, few understood the wider
implications. One of McArdle’s main advances was to instantiate this idea of a general net-
work model in a way that it could be estimated using cost function minimization optimizers
(whether least squares, maximum likelihood, or Bayesian techniques such as Multi-Chain
Monte Carlo). Methods for examining networks of variables have recently begun to evolve
past RAM into techniques such as Exploratory Graph Analysis (EGA) (Golino & Epskamp,
2017), the GIMME algorithm (Gates, Molenaar, Hillary, Ram, & Rovine, 2010; Gates, Mole-
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naar, Iyer, Nigg, & Fair, 2014), and SEM Trees (Brandmaier, 2011; Brandmaier, Oertzen,
McArdle, & Lindenberger, 2013). These techniques are a testament to how far the field
of SEM has progressed since the days when it was yet unclear how each separate type of
statistical model related to one another. Even more impressive, our theories are beginning
to break free of the trap of directed-effects causal thinking that has kept us from under-
standing the implications of resonant recurrent networks of relations—from appreciating
Cattell’s reticule as illustrated by Horn & McArdle (1980) in Figure 5.

Mi Mj

Ll Lk

Figure 5. A reticule of variables (after Horn & McArdle, 1980, p. 194). Note that this diagram differs
from Horn & McArdle in that arrows have been added to the covariance arcs and variances have been
added to comply with McArdle’s later full statement of RAM path diagrams. Single headed arrows from
variables to themselves represent stability coefficients in an autoregressive sense. In the reticule it is
useful to interpret single headed arrows as being effects occurring across time and double headed arrows
as being contemporaneous. In this way, it the reticule can be seen as the basic building block of modern
network algorithms.

Another important consequence of the RAM model and its isomorphic correspondence
to path diagrams is that the way we discuss statistical models and teach SEM has been
transformed. When students come into my office to ask questions about their theories and
models, they overwhelmingly choose to bring a path diagram with them. In this way we can
quickly communicate about the implications of models. After learning the tracing rules,
students begin to actively explore the consequences of adding or subtracting regression
relations in their models. This was made very clear to me when a second year graduate
student came to see me after an SEM class period. She was excited and said she had just
won her first argument with her advisor. She said she proved her point to her advisor using
tracing rules and he was forced to agree. The didactic power of complete and isomorphic
path diagrams is not to be underestimated.

The Future of RAM

The RAM model is not a static concept. It has been extended in several ways, for
instance to account for multi-group and mixture distribution models. It has been used to
fit state space and dynamical systems models such as Latent Differential Equations (LDE)
(S. M. Boker, Neale, & Rausch, 2004). Recently, the OpenMx team has been exploring new
extensions that have enabled multilevel models. The power of the RAM philosophy here
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can be seen in the efficiency of the RAMpart (Pritikin et al., 2017) model, an efficiency that
derives from a graph theoretic transformation developed by von Oertzen (2010) where the
portions of the RAM model that need to be inverted can be automatically isolated from
the remainder of the multilevel model. Current work has been focusing on efficient and
compact methods for estimating variances and covariances of products of variables. This
will require an extension of the RAM matrices and new tracing rules. The RAM philosophy
of reticular action of a network has been central to this work.

In short, the RAM model has been unreasonably influential in the development of
the field of SEM over the past 40 years. I hope you will join me in thanking Jack McArdle
for his incredibly helpful insights into the reticular structure of the network of relations
between variables.
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